Self Driving cars – How do they Drive

There are many devices and integrated items that ensure that a self driving car drives safely and within the boundaries that we set on to it. Through my Self Driving Car Engineer NanoDegree I have learnt many of the ways of controlling Autonomous Vehicles through the use of sensors utilising robotics to enable the car to navigate and drive accordingly.

A newer approach, that I have been concentrating on, is the use of Deep Learning capabilities for the cars to mimic human driving behavior. Both of these, robotics and neural networks, together enable the car to be safe and reliable.

Initially lets look at video capabilities to stay within the lines.

Using Python Code I developed the vehicle to understand where the lines where in the road.
1  Yellow to white – This was to capture any yellow shades to be processed in B&W
2  Grayscale – The modification of the image to a shades of grey
3  Gaussian blur – Slight blur to remove ‘noise’ from the image
4  Canny – With a low and high thresholds

5  Region of Interest – Selecting two areas that will only be reviewed
6  Hough – Lines detecting the lines intersections and outputting an array of endpoints
7  Drawlines – Left and right slopes defined and lines drawn

Why are these so important. Well this video shows the output of the lane lines project.

An Autonomous Car can not drive on this alone, far from it. It is very basic and will only work within the boundaries that we have provided.

Next I will show some basic Neural Networks and how they adopt the learning of street signs.